Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 240(3): 1116-1133, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37608617

RESUMEN

The regulatory framework of leaf senescence is gradually becoming clearer; however, the fine regulation of this process remains largely unknown. Here, genetic analysis revealed that U2 small nuclear ribonucleoprotein B (U2B″), a component of the spliceosome, is a negative regulator of leaf senescence. Mutation of U2B″ led to precocious leaf senescence, whereas overexpression of U2B″ extended leaf longevity. Transcriptome analysis revealed that the jasmonic acid (JA) signaling pathway was activated in the u2b″ mutant. U2B″ enhances the generation of splicing variant JASMONATE ZIM-DOMAIN 9ß (JAZ9ß) with an intron retention in the Jas motif, which compromises its interaction with CORONATINE INSENSITIVE1 and thus enhances the stability of JAZ9ß protein. Moreover, JAZ9ß could interact with MYC2 and obstruct its activity, thereby attenuating JA signaling. Correspondingly, overexpression of JAZ9ß rescued the early senescence phenotype of the u2b″ mutant. Furthermore, JA treatment promoted expression of U2B″ that was found to be a direct target of MYC2. Overexpression of MYC2 in the u2b″ mutant resulted in a more pronounced premature senescence than that in wild-type plants. Collectively, our findings reveal that the spliceosomal protein U2B″ fine-tunes leaf senescence by enhancing the expression of JAZ9ß and thereby attenuating JA signaling.

2.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569371

RESUMEN

Leaf senescence is a natural phenomenon that occurs during the aging process of plants and is influenced by various internal and external factors. These factors encompass plant hormones, as well as environmental pressures such as inadequate nutrients, drought, darkness, high salinity, and extreme temperatures. Abiotic stresses accelerate leaf senescence, resulting in reduced photosynthetic efficiency, yield, and quality. Gaining a comprehensive understanding of the molecular mechanisms underlying leaf senescence in response to abiotic stresses is imperative to enhance the resilience and productivity of crops in unfavorable environments. In recent years, substantial advancements have been made in the study of leaf senescence, particularly regarding the identification of pivotal genes and transcription factors involved in this process. Nevertheless, challenges remain, including the necessity for further exploration of the intricate regulatory network governing leaf senescence and the development of effective strategies for manipulating genes in crops. This manuscript provides an overview of the molecular mechanisms that trigger leaf senescence under abiotic stresses, along with strategies to enhance stress tolerance and improve crop yield and quality by delaying leaf senescence. Furthermore, this review also highlighted the challenges associated with leaf senescence research and proposes potential solutions.

3.
Molecules ; 26(23)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34885966

RESUMEN

Rhodiolacrenulata (Hook.f. & Thomson) H.Ohba is an alpine medicinal plant that can survive in extreme high altitude environments. However, its changes to extreme high altitude are not yet clear. In this study, the response of Rhodiola crenulata to differences in altitude gradients was investigated through chemical, ICP-MS and metabolomic methods. A targeted study of Rhodiola crenulata growing at three vertical altitudes revealed that the contents of seven elements Ca, Sr, B, Mn, Ni, Cu, and Cd, the phenolic components, the ascorbic acid, the ascorbic acid/dehydroascorbate ratio, and the antioxidant capacity were positively correlated with altitude, while the opposite was true for total ascorbic acid content. Furthermore, 1165 metabolites were identified: flavonoids (200), gallic acids (30), phenylpropanoids (237), amino acids (100), free fatty acids and glycerides (56), nucleotides (60), as well as other metabolites (482). The differential metabolite and biomarker analyses suggested that, with an increasing altitude: (1) the shikimic acid-phenylalanine-phenylpropanoids-flavonoids pathway was enhanced, with phenylpropanoids upregulating biomarkers much more than flavonoids; phenylpropanes and phenylmethanes upregulated, and phenylethanes downregulated; the upregulation of quercetin was especially significant in flavonoids; upregulation of condensed tannins and downregulation of hydrolyzed tannins; upregulation of shikimic acids and amino acids including phenylalanine. (2) significant upregulation of free fatty acids and downregulation of glycerides; and (3) upregulation of adenosine phosphates. Our findings provide new insights on the responses of Rhodiola crenulata to extreme high altitude adversity.


Asunto(s)
Antioxidantes/análisis , Minerales/análisis , Extractos Vegetales/análisis , Rhodiola/química , Altitud , Antioxidantes/metabolismo , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Flavonoides/análisis , Flavonoides/metabolismo , Metaboloma , Minerales/metabolismo , Fenoles/análisis , Fenoles/metabolismo , Extractos Vegetales/metabolismo , Rhodiola/crecimiento & desarrollo , Rhodiola/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...